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Automated auditory response detection:

Statistical problems with repeated testing

Evaluación repetida en la detección de respuestas
auditivas

Abstract
Sequential application of a statistical test is usually
applied in an automated auditory response detection
algorithm. The sequential test strategy is very time-
efficient but increases the probability of a false rejection
of the null-hypothesis. For this reason, it is necessary to
correct the critical test value. However, the well-known
Bonferroni correction leads to an over-correction when
dealing with dependent or partly dependent data. The
objective of the study reported here was to develop a
method to determine the critical test value for the
sequential testing of dependent data. Extensive Monte
Carlo simulations were used to develop this method. The
simulation results were reviewed and the benefit of the
suggested method, in comparison to the Bonferroni
correction, was shown using a large sample of real
amplitude modulation following response data. The
detection rate determined for these data and the ROC
curve demonstrate the advantage of using the method
suggested here.

Sumario
La aplicación secuencial de pruebas estadı́sticas se usa
normalmente con algoritmos automatizados para la
detección de respuestas auditivas. La estrategia de
pruebas secuenciales es muy eficiente en tiempo pero
incrementa la probabilidad de falso rechazo de la
hipótesis nula. Por esta razón, es necesario corregir el
(los) valor(es) crı́tico(s) de la prueba. No obstante, la bien
conocida corrección de Bonferroni lleva a una sobre-
corrección cuando se trata de datos dependientes o
parcialmente dependientes. El objetivo de este estudio
fue desarrollar un método para determinar el valor crı́tico
de la prueba, para la evaluación secuencial de datos
dependientes. Se usaron amplias simulaciones Monte
Carlo para desarrollar este método. Se revisaron los
resultados de la simulación y se mostró el beneficio del
método sugerido, en comparación con la corrección
Bonferroni, con el uso de amplias muestras de modula-
ción real de amplitud, siguiendo los datos de respuesta.
La tasa de detección determinada por estos datos y la
curva ROC demuestran las ventajas del uso del método
que aquı́ se sugiere.

Introduction

When assessing the hearing threshold by means of auditory

steady-state responses (ASSR), or screening the hearing in

newborns by means of otoacoustic emissions (OAE) or auditory

brainstem responses (ABR), a stepwise (sequential) application

of the statistical decision criterion which is carried out simulta-

neously with the data acquisition, is usually preferred. This

means that the statistical test is applied for the first time, as soon

as a predefined minimum number of stimulus-related epochs are

available. If no response is detected by this first test, the

sample will be extended by a given number of epochs and the

test will be carried out again. This procedure is repeated until a

response is detected, a predefined maximum number of epochs

have been reached or a predefined maximum examination time

has expired (see e.g. the general discussion by Don & Elberling,

1996). This successive procedure is more efficient than using

a fixed sample size and a single statistical testing. If, for example,

a small sample size is chosen, small responses may not be

detected and if a large sample size is chosen, time might be

wasted detecting responses of a high amplitude that already

could have been detected using a considerably smaller sample

size. However, a clear disadvantage of the sequential test strategy

is that multiple statistical testing increases the probability of

false rejection of the null-hypothesis (Lütkenhöner, 1991).

Therefore, in the case of repeated testing, a correction of

the significance level is necessary (Hochberg & Tamhane,

1987). If a significance level of p is to be ensured in n tests

using independent data, testing has to be performed at a

significance level of p ’�/p /n in accordance with Bonferroni’s

rule. This has the advantage that the required probability p

for false rejection of the null-hypothesis (false pass in hearing

screening) is fulfilled. However, the probability of false

rejection of the alternative hypothesis, HA , becomes inevitably

higher as a consequence of the increase in the critical test value

because an existing response may no longer be detected. Up to

now, we have used the Bonferroni correction (Cebulla et al,

2000), and the necessity of using this correction when using a

successive test strategy for hearing screening in newborns has

also been emphasized by Picton et al (2002). However, similar

comments have not been made in other publications dealing with

objective determination of hearing threshold and hearing

screening in newborns. This leaves the impression that this

specific problem may have been overlooked during the practical

application of the different statistical test procedures with

commercial devices.

The above-mentioned Bonferroni correction only applies if

multiple tests use independent data. With dependent data the
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Bonferroni correction is too conservative (Hochberg & Tam-

hane, 1987), i.e. a smaller level of p ? than necessary is chosen to

fulfil the given significance level p. These facts apply to the

sequential procedures used for the objective determination of

hearing threshold and hearing screening in newborns. The

individual tests are not based on independent data because the

current sample consists of the previous one with the addition of

one or more new epochs. A correction in accordance with

Bonferroni is therefore not optimal for sequential testing of such

samples. By using the Bonferroni correction, the probability for

false rejection of the null-hypothesis is reduced beyond the

extent required and, furthermore, the time required for the

response detection is prolonged.

The objective of the study reported here was to demonstrate

over-correction when applying the Bonferroni correction and to

develop a method, to determine the critical test values for

repeated testing of dependent samples, independent of the

applied statistical test procedure. The development of the

method was carried out by means of extensive Monte Carlo

simulations. The simulation results were reviewed and the benefit

of the suggested method compared to the Bonferroni correction

was shown on the basis of a large sample of real Amplitude-

Modulation Following Response (AMFR) data.

Methods

The method used for the Monte Carlo simulations has already

been described in detail (Stürzebecher et al, 1999): Pairs of

Gaussian distributed random numbers were generated using the

Box-Müller method (Press et al, 1986). These pairs could be

regarded as the components ai and bi of a vector Vi in Cartesian

coordinates. The phase angle is calculated in accordance with

8i �/arctan (bi /ai ) and the vector length is jVi j�/(ai
2�/bi

2)1/2.

The analyses were carried out using the modified Rayleigh test

as a model (Moore, 1980). The modified Rayleigh test is a test in

the frequency domain that evaluates the phase and amplitude of

a harmonic (usually the first harmonic) of the spectrum of an

‘auditory steady-state response’ (ASSR). In a previous article

(Cebulla et al, 2001), we have shown that the modified Rayleigh

test is one of the most powerful tests, therefore this test was

chosen for the present study. However, any other known

statistical test for response detection could have been used.

The test statistics of the modified Rayleigh test are
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ri �/ rank number of Vi ; 1 5/ ri 5/ n ;

Vi �/ spectral amplitude;

n �/ sample size.

In an earlier study concerning the objective detection of the

AMFR carried out by means of different one-sample tests

(Cebulla et al, 2001), a sample size with the maximum number of

100 epochs was found to be well suited. This forms the basis for

the simulations carried out within the scope of the present study.

8�/106 data sets each consisting of 100 pairs of random numbers

(sample size 100) were generated. The high number of 8�/106

data sets was chosen to make sure that reliable estimates of the

two null hypotheses were obtained.

Each data set was tested using the modified Rayleigh test,

starting with a sample size of 10. This sample was stepwise

extended by one pair of random numbers (increment 1) until all

100 pairs were included. In this manner, 91 test results (91 test

values) were achieved for each data set. Two different frequency

distributions H01 and H02, each with 1000 classes of test values,

were constructed from the test values of the 8�/106 data sets in

the following way.

Frequency distribution H01 and H02
Each complete data set was described by two parameters: its

final test value and its maximum test value. The frequency

distribution H01 was formed by the 8�/106 final test values,

whereas the frequency distribution H02 was formed by the

8�/106 maximum test values.

The critical test values for p�/0.01 (a�/1%) were calculated on

the basis of the two distributions and the Bonferroni correction

of the critical test value for n�/91, determined by means of H01,

was carried out.

The same calculations as described above for n�/91, were also

carried out for n�/16 because many authors use a markedly

lower number of test steps in automatic ASSR detection,

frequently n�/16 (Champlin, 1992; Dobie & Wilson, 1993;

Lins & Picton, 1995; Valdes et al, 1997).

H01 is independent of the number of test steps because only

those test values resulting from the single testing of the

entire sample are included in the distribution. To distinguish

between the two different H02 distributions, the respective

distributions and critical test values are assigned the indices 91

or 16 corresponding to the number of test steps (i.e. H0291 or

H0216).

The evaluation of the simulation results was carried out on the

basis of a large sample of real Amplitude-Modulation Following

Response (AMFR) data (Cebulla et al, 2001). The sample

contained the raw data of 1484 stored AMFR recordings, each

with a length of 102.4 s. The data were recorded from 57 male

and female adults, aged between 20 and 64 years. 46 subjects had

normal hearing with threshold of 10 dB HL or better at 500 �/

4000 Hz. 11 subjects had a sensorineural hearing loss of at least

30 dB, but no more than 65 dB for at least one of the four

frequencies 500, 1000, 2000, and 4000 Hz. The subjects reclined

comfortably on an examination couch in a soundproof and

electrically shielded room. They were asked to relax and if

possible to sleep during the examination. For the normally

hearing subjects, the stimulus level was 30 dB nHL. For the

patients with hearing loss, the stimulus level was 30 dB SL. The

low stimulus level was chosen because differences in test

performance are more apparent for stimulus levels near thresh-

old. (For further details see Cebulla et al, 2001.)

The AMFR is composed by response energy located at several

harmonics in the frequency domain, where the frequency of the
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first harmonic corresponds to the modulation frequency (in this

case approximately 90 Hz). The frequencies of the higher

harmonics are integer multiples of the modulation frequency.

Each set of data was divided into 100 epochs with a length of

approximately 1 s. The epochs were transformed to the

frequency domain by means of a Discrete Fourier Transforma-

tion (DTF). The frequency resolution amounts to about 1 Hz as

a result of the chosen epoch length.

These data were first used to investigate whether the suggested

solution leads to a statistically correct result and next, to

estimate the gain in test performance.

Evaluation of the statistical correctness of the suggested
procedure
As a consequence of the selected epoch length of approximately

1 s and the modulation frequency of approximately 90 Hz, 89

spectral components that only contained background noise were

positioned between the spectral components of the harmonics of

the response. 25 000 of these data sets, each consisting of 100

spectral noise components, were subjected to the modified

Rayleigh test. The distributions H01 and H0291 were constructed

with these 25 000 test values in the same manner as described

above for the simulated data. Additionally, each data set was

tested once using the critical test value for a(H01)�/1%, but in 91

or 16 test steps with the critical test values for a(H0291)�/1% and

a(H0216)�/1% and with the test values of n�/91 and n�/16,

corrected in accordance with Bonferroni.

Evaluation of the gain in test performance
The modified Rayleigh test was applied to the spectral compo-

nent of the first harmonic (fundamental frequency) of the

AMFR, at approximately 90 Hz, to determine the gain in test

performance. The analysis was based on the following critical

test values:

. critical test values for a(H01)�/1% for n�/91 and n�/16,

corrected in accordance with Bonferroni;

. critical test values for a(H0291)�/1% and a(H0216)�/1%.

Testing of each of the 1484 AMFR data sets was carried out

using both the critical test values corrected in accordance with

Bonferroni and those critical test values determined from H0291

and H0216, using 91 or 16 test steps.

Performance was compared on the basis of the detection rate

determined for the AMFR data and on the basis of the mean

detection time. The mean detection time is the mean value of the

time required for the detection of individual responses; it was

calculated from the number of epochs required for response

detection.

In addition, receiver-operating characteristics, ROC-curves

(Green & Swets, 1966; Howell, 1987; Lütkenhöner, 1991)

were constructed from the probability density functions of H0

estimated by the described Monte Carlo simulations and from

the distribution of the test values calculated for the 1484

AMFR-data sets (maximum of 91 test steps) which acts as an

estimate of the alternative hypothesis, HA . A ROC-curve relates

the probability of true acceptance of the alternative hypothesis,

HA ,(HITS) to the probability of false rejection of the null-

hypothesis, H0, (FALSE ALARMS), and allows a comprehen-

sive assessment of the detection performance of a statistical test

procedure. For the construction of the ROC-curve for the

Bonferroni correction, H01 was re-plotted so all original a-

values now corresponded to values that were 91 times smaller;

for example, the H01-point for a�/1% was moved to the position

for a�/0.011% (the Bonferroni-corrected test level).

Results and discussion

Simulated data
Figure 1 shows the frequency distributions H01 and H0291

derived from the 8�/106 simulations with the modified Rayleigh

test. (For presentation purposes, 10 of each of the 1000 classes

were consolidated into a total of 100 classes.) The corresponding

distributions constructed from the 25 000 AMFR data sets

containing only background noise are shown for comparison

in Figure 1. 25 000 data sets were obviously too few to produce a
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Figure 1. Simulated frequency distributions H01 and H0291 with the critical test values for a(H01)�/1%, a(H02)�/1%, and
a(H01Bonf.)�/0.011% indicated by arrows. The 8�/106 final test values that resulted from the test of each data set using all 100 pairs of
random numbers were used for the frequency distribution H01. To form the frequency distribution H0291, only the 8�/106 maximum
test values that resulted from the 91 tests of each data set were used. The corresponding distributions constructed from the 25 000
AMFR data sets containing only background noise are shown for comparison in Figure 1.
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sufficiently smooth distribution. However, the simulated dis-

tributions fit the H0-distributions of the real AMFR data very

well. This indicates that the simulated data lead to reliable

estimates of the probability density functions of the null-

hypotheses for the different test situations. With simulations, a

great number of samples (here 8�/106 samples with 100 pairs of

random numbers each) is more easily attainable than with real

data. Such a large number of samples is necessary to get a high

resolution especially in the extreme tail of the distributions. This

is important for specifying the critical test values at a very low a-

level (for instance a�/0.01%) which is necessary for screening

applications.

Figure 2 shows all three simulated frequency distributions:

H01, H0291 and H0216. H01 is an estimate of the null-hypothesis

when using a single testing of a sample. Because of the initial

considerations, it is assumed that H0291 is an estimation of the

null-hypothesis in a case where 91 successive tests are carried out

using dependent samples. The highest of the 91 test values of

each of the simulated 8�/106 samples was used in each case to

construct the distribution H0291. This maximum test value is the

test value that can lead to a false rejection of the null-hypothesis

in the case of sequential testing. The distribution of these

maximum test values indicates the worst cases in successive

testing of dependent samples. The critical test value for a

predefined error probability in multiple tests of dependent

samples can also be directly derived from the distribution

H02n, in the same way as in the case with single tests from

H01 (without additional correction). This is shown for 91

sequential test steps in Figure 1. An error probability of a�/

1% was chosen as the basis for comparing the results. The critical

test value from the distribution H01 was chosen for the single

test of a sample with the modified Rayleigh test. The critical test

value for a(H01)�/1% is 1.25. The Bonferroni correction for 91

test steps leads to an error probability of a(H01Bonf.)�/a(H01)/

91�/0.011%. The corresponding critical test value from H01

amounts to 1.73. In contrast, the critical test value resulting

from H0291, for the 91-fold successive testing of dependent

samples with a(H02)�/1%, amounts to only 1.51.

The critical test value for the nonrecurring testing is the

smallest among the 3 critical test values specified. Thus, with a

Type I error (false rejection of the null-hypothesis H0 when a�/

1%) that is identical for all three variants, the Type II error (false

rejection of the unknown alternative hypothesis HA, located to

the right of H0 in Figure 1) is the smallest in testing once.

Consequently, the sensitivity-index (a measure of distance

between the distribution of the null-hypothesis and the alter-

native hypothesis) is highest when a sample is subjected to single

testing.

The disadvantage represented by a slight reduction in the

sensitivity index, brought about by the required increase of the

critical test value, has to be accepted if one wants to benefit from

the advantages of the sequential testing described above.

However, the loss in sensitivity index is significant when

dependent samples are tested using a critical test value corrected

in accordance with Bonferroni’s rule.

The aim of this study was to restrict the loss in sensitivity-

index to the necessary extent when testing dependent samples.

The critical test value resulting from H0291 for the successive 91-

fold testing of dependent samples is markedly lower than the

critical test value from H01 corrected in accordance with

Bonferroni. This leads to a higher sensitivity index than that

achieved with the critical test values corrected in accordance

with Bonferroni.

AMFR data �/ test application on the background noise
spectral components
Initially, we had to examine whether the suggested method

provided statistically correct test values. For this purpose, the

modified Rayleigh test was applied to the spectral components

from 25 000 AMFR data sets that only contained biological

background noise. Each set of data comprising 100 background-

noise spectral components was tested once using the critical test

value for a(H01)�/1%. Furthermore, the data sets were tested in

91 or 16 test steps using the critical test values for a(H0291)�/1%

and a(H0216)�/1% and the test values for n�/91 and n�/16

corrected in accordance with Bonferroni.

In all test conditions, accidental response detection can be

expected in a particular number of data sets, despite the fact that

the background-noise spectral components contain no stimulus-

related power. In single testing of the sets of data with the critical

0

05

001

051

002

052

003

053

004

054

005

28.16.14.12.118.06.04.02.00

x 
10

00

eulav tseT

F
re

qu
en

cy

10H

610 2H 190 2H

Figure 2. Simulated frequency distributions H01, H0216, and H0291. To form the frequency distribution H0216, only the 8�/106

maximum test values that resulted from the 16 tests of each data set were used.

Automated auditory response detection:
Statistical problems with repeated testing

Stürzebecher/Cebulla/Elberling 113



test value for a(H01)�/1%, a false rejection of H0 must be

expected to appear in approximately 1% of the data sets. If the

critical test values for the multiple testing of dependent samples

are correct, an accidental rejection of the null-hypothesis will

also take place in approximately 1% of the data sets when testing

the background noise spectral component 91 or 16 times using

the critical test value for a(H02)�/1%. In contrast, the percen-

tage of an accidental rejection of the null-hypothesis should be

markedly below 1% if the correction of the critical test values in

accordance with Bonferroni is actually too conservative.

A response was erroneously detected in 237 data sets (false

rejection of the null-hypothesis) during the single testing of the

background noise samples. This corresponds to an error rate of

0.95% (237/25,000) �/ very close to the predefined error prob-

ability of a�/1%. Table 1 contains the values that resulted from

the multiple testing of the samples. The critical test values

corrected in accordance with Bonferroni, results in an error rate

of 0.29% using 16 test steps and an error rate of 0.13% using 91

test steps. These values are considerably below the predefined

error probability of 1%. Thus, it is confirmed that the procedure

carried out in accordance with Bonferroni actually leads to over-

correction in the case of dependent samples. The error rate for 16

test steps is closer to the predefined error probability of 1% than

the value for 91 test steps. With a decreasing number of test

steps, any over-correction caused by applying the Bonferroni

correction obviously becomes smaller.

Using the critical test values for a�/1% determined from

H0291 or H0216, an error rate of 0.95% results for 91 test steps

and 1.02% for 16 test steps. Both values correspond approxi-

mately to 1%, i.e. the predefined error probability. The difference

between the error rates for the H02 condition and for the

Bonferroni correction is highly significant (p B/0.0001, Fishers

exact test) for 91 test steps and 16 test steps as well. These results

demonstrate that the procedure suggested for determining the

critical test values for the multiple testing of dependent samples

provides correct critical test values.

In Figure 3, the critical test values (a�/1%) are plotted as a

function of the number of test steps for the Bonferroni

correction as well as for the new procedure suggested here.

The critical test value corrected according to Bonferroni’s rule

increases steadily with increasing number of test steps. In

contrast, the critical test value assessed from H02 shows a

significant increase only up to about 30 test steps and a further

increment in the number of test steps only leads to a marginal

increase of the critical test value. The reason for this is that the

amount of dependency increases with each new epoch that is

added to the sample, and at the same time the amount of change

in the statistical characteristics of the sample decreases with

increasing sample size.

AMFR data �/ test application on the spectral response
component
When the 1484 data sets consisting of 100 epochs are tested once

using the critical test value for a�/1% determined from H01, a

detection rate of 87.1% is achieved. This value is slightly lower

than the detection rate of 88.6% stated in a previous publication

for the same set of data with the application of the modified

Rayleigh test (Cebulla et al, 2001). The reason for this is that the

critical test value (1.240) determined for H01 using a smaller

number of Monte Carlo simulations was slightly lower than the

presently-determined critical test value (1.248), where H01 was

estimated with 8�/106 simulated test values. Using the critical

test values determined from H0216 and H0291 as well as the

critical test values from H01 for n�/16 or n�/91, corrected in

accordance with Bonferroni, the detection rate is given in Table 2

and the mean detection time in Table 3, for testing the spectral

response component (first harmonic) of the AMFR data. The

error probability was a�/1%. In principle, it is not to be expected

that the detection rate determined in single testing is obtained in

multiple testing because the critical test values for multiple

testing are higher than the critical test value for single testing. A

detection rate of 80.8% was achieved for 16 test steps (H0216)

and a detection rate of 79.8% was achieved for 91 test steps

(H0291). In accordance with expectations, the detection rate for

16 test steps is slightly higher than that for 91 test steps because

the critical test value for 16 test steps is slightly lower. In return,
Table 1. Error rates (probability of a false rejection of the null-
hypothesis) achieved when testing the background-noise spectral
components of the AMFR data set using the critical test values
determined from H0216 and H0291, as well as the critical test
values corrected in accordance with Bonferroni for n�/16 or n�/

91 from H01. The selected error probability is a�/1%. The single
testing of each data set with the critical test value determined for
a�/1% from H01 results in an observed error rate of 0.95%.

H0 2 Bonferroni

16 test steps 1.02% 0.29%
91 test steps 0.95% 0.13%
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Figure 3. Critical test values (a�/1%) plotted as a function of
the number of test steps for the Bonferroni correction as well as
for the new procedure using the estimated distribution H02.

Table 2. Detection rate for the testing of the spectral response
components (first harmonic) of the AMFR data set, using the
critical test values determined from H0216 and H0291 and the
critical test values corrected in accordance with Bonferroni,
determined for n�/16 or n�/91 from H01. The chosen error
probability is a�/1%.

H0 2 Bonferroni

16 test steps 80.8% 74.9%
91 test steps 79.8% 67.6%
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the time effectiveness is less favourable for 16 test steps. This is

because, in the case of 100 epochs with a length of approximately

one second, 16 test steps produce a step-width of 5 epochs if

the first test is carried out with 10 epochs. Here, the detection

time is determined with a time frame of approximately 5 s. In the

case of 91 test steps, the frame corresponds to the epoch length

of 1 s.

The detection rates (16 test steps: 74.9%; 91 test steps: 67.6%)

determined with the critical test values corrected in accordance

with Bonferroni are lower than the detection rates for the critical

test values determined from H0291 and H0216. The difference

between the detection rates is smaller for 16 test steps (5.9%)

than for 91 test steps (12.2%). According to Figure 2, this is to be

expected because the difference between the critical test values in

16 test steps is lower than in 91 test steps. The difference between

the detection rates for the H02 condition and for the Bonferroni

correction presented in Table 2 is highly significant (p B/0,0001,

Fisher’s exact test) for 91 test steps and 16 test steps as well.

These results confirm the expectation that a higher probability of

a true detection of the alternative hypothesis is achieved with the

critical test values determined by means of the method presented

in this study, in comparison to the test values corrected in

accordance with Bonferroni. This is also illustrated by the ROC-

curves in Figure 4, which shows the ranking of the performance

of the three test conditions described above. The ROC-curve for

the single testing of the sample of 100 epochs (H01) runs at the

highest level indicating the best performance, whereas the ROC-

curve for the Bonferroni correction (H01Bonf91) runs below the

other curves and thus reveals the poorest performance. A critical

test value determined by means of the method presented in this

study (H0291) leads to a performance lower than that of the

single testing but higher than that reached by the Bonferroni

correction.

Because the time required for the detection of a response

(number of epochs required) is closely related to the higher

probability of a true detection of the alternative hypothesis, the

mean detection time using critical test values corrected in

accordance with Bonferroni as stated in Table 3 is also slightly

longer than for those corresponding to the critical test values

determined from H0216 and H0291. The reduced examination

time that results when using the more favourable critical test

values is, however, not as important as the increased sensitivity

achieved.

General discussion

The considerations and results demonstrated in this study for the

modified Rayleigh test apply in principle to all statistical tests

carried out in the time or the spectral domain used for the

response detection in ASSR, ABR, or OAE. The modified

Rayleigh test is one of the most effective tests among the one-

sample tests used for response detection in the spectral domain

(Cebulla et al, 2001). The critical test value corresponding to the

number of test steps intended by the user can easily be found. In

this study the steps of 16 and 91 have been used as examples. If

another statistical test is used and the method to determine the

critical test values for dependent samples described here is

applied, only the simulations will have to be carried out for the

construction of the corresponding H02x null-hypothesis de-

scribed above. Here, x corresponds to the maximum number

of test steps preferred by the user. The critical test value for the

predefined error probability a can be determined directly from

H02x .

Both the error probability and the maximum number of test

steps will depend on the actual application. The error probability

a�/1%, which is used throughout this paper, is sufficient for the

objective determination of the hearing threshold (e.g. by means

of AMFR). A false rejection of the null-hypothesis is thus

expected in one out of 100 recordings below threshold where

there is no response. When determining the hearing threshold,

such an incorrect measurement is not particularly critical.

However, a considerably lower probability of a false rejection

of the null-hypothesis is necessary for the hearing screening in

newborns. With an error probability a�/0.1%, the hearing loss

would still not be detected in one out of 1000 screenings on

newborns with hearing impairment, but the consequences of a

false pass would be dramatic for this one baby. Therefore, tests in

hearing screening should preferably be carried out with an error

probability even lower than a�/0.1%.

A critical test value, which has been corrected accordingly,

has to be used to actually meet the required error probability,

a, because the devices used in hearing screening usually work
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Figure 4. ROC-curves for the modified Rayleigh test applied
under three different test conditions: (1) single testing using 100
epochs (H01), (2) with the Bonferroni correction using 91 test
steps (H01Bonf. 91) and (3) using 91 test steps (H0291). Concerning
the construction of the ROC-curves see text.

Table 3. Mean detection time9/standard deviation for the
testing of the spectral response component (first harmonic) of
the AMFR data set using the critical test values determined
from H0216 and H0291 and the critical test values corrected in
accordance with Bonferroni, determined for n�/16 or n�/91
from H01. The selected error probability is a�/1%.

H0 2 Bonferroni

16 test steps 42.19/26.4 s 44.89/25.8 s
91 test steps 39.89/26.0 s 45.79/24.8 s
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with a sequential test strategy. Every correction means an

increase in the critical test value and, as a consequence, results

in an increase in the probability of a false rejection of the

alternative hypothesis. In hearing screening, this is synonymous

with an increased fail rate, since a true response is not detected.

The application of the familiar correction in accordance with

Bonferroni does guarantee the required error probability, a, but

the fail rate is increased excessively as a consequence of the over-

correction in the case of dependent samples. In contrast, the new

method suggested here produces statistically-correct critical test

values for dependent samples, as has been shown in this study.

This procedure also leads inevitably to a slightly higher fail rate,

but the probability of a false rejection of the alternative

hypothesis is considerably lower than in the case of the

correction in accordance with Bonferroni. The test parameters

should be selected as effectively as possible in hearing screening,

as well in objective determination of the hearing threshold, to

compensate for the inevitable decrease in the probability of a

true acceptance of the alternative hypothesis in a sequential test

strategy.

If a maximum measuring time of two minutes is assumed in an

ASSR hearing screening, the 120 seconds can either be divided

into a larger number of short epochs or into a lower number of

longer epochs. In an earlier article (Cebulla et al, 2001), we could

show for the AMFR data which also has been used in the present

study, that a higher number of short epochs is more effective in

the case of one-sample tests. The detection rate shows a flat

optimum at an epoch length of between one and two seconds.

Apart from this, an epoch length that clearly exceeds 2 s extends

the detection time. A response that is detected, for example, after

26 s at an epoch length of 1 s can only be detected after 30 s at an

epoch length of 5 s, even in the most favourable case. Here, for

example, the fact that every statistical test needs a minimum

sample size for a reliable result has not been taken into

consideration. Using the modified Rayleigh test, the first test

of the sequential test procedure was carried out here with

10 epochs. With an epoch length of 5 s, this would mean that

the first test has to await 50 s before it can be carried out. This

would lead to a considerable lengthening of response detection

times.

A stimulation level between 35 or 40 dB HL is used in ABR

hearing screening. These stimuli are at supra-threshold levels for

babies with normal hearing. Response detection is normally

achieved within a relatively short measurement period. For

example, the mean detection time is approximately 40 s (Cebulla

et al, 2003; lecture presented at the IERASG meeting, Tenerife,

2003) with the ASSR algorithm (Stürzebecher et al, 2003)

implemented on the MAICO, MB11 automated test system

equipped with the BERAphone†. Here, a step-width of 1 is an

obvious choice in the case of a sequential testing (epoch length

about 1 s). The conditions that have to be considered during the

objective determination of the hearing threshold by means of

AMFR are different. Measurements above, close to and below

the threshold have to be taken into account. Without a

sequential test strategy, the examination would require an

unreasonably high expenditure of time because a defined sample

size would then have to be selected to enable responses close to

the threshold to be detected. As the detection times for supra-

threshold responses are relatively small (see above), this results

as a whole in a sufficiently short duration of the threshold

assessment when using a sequential test strategy, particularly

because several frequencies can be tested simultaneously. Ac-

cording to our experience, a maximum test length of about six

minutes seems to be sufficient before the test is discontinued with

the result ‘no detectable response’. With a measuring length of 6

min, an epoch length of 2 s and a test step-width of 2 should be

chosen so that the number of sequential test steps is not too

high. With these parameters, the time-effectiveness of the

sequential test strategy becomes only slightly unfavourable.

Picton et al (2003) reported that tests aimed at detecting

AMFR close to the threshold had to be extended by up to 10

min or more. Dimitrijevic et al (2002) worked with periods up to

17 min. A greater step-width would be recommendable with

these test durations. This, however, produces unnecessarily long

test durations in supra-threshold responses. Furthermore, a test

length of 10 min and more leads to a not justifiable total

examination time. It is more favourable to use a statistical test

procedure with a higher test power instead of lengthening the

measuring time.

Until now, information from the higher harmonics is ne-

glected, and one-sample tests that only evaluate the first

harmonic have most often been used to detect ASSR in the

frequency domain (Champlin, 1992; Dobie & Wilson, 1993; Lins

& Picton, 1995; Aoyagi et al, 1999; John and Picton, 2000;

Rance & Rickards, 2002). If, however, a q -sample test which also

incorporates higher harmonics is used, a higher detection rate

and a shorter detection time are achieved in comparison to the

one-sample tests (Cebulla et al, unpublished). As recommended

above, a maximum test duration of about six minutes can then

be expected.
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